Baking
Yeast, most commonly Saccharomyces cerevisiae, is used in baking as a leavening agent, where it converts the fermentable sugars present in the dough into carbon dioxide. This causes the dough to expand or rise as the carbon dioxide forms pockets or bubbles. When the dough is baked it "sets" and the pockets remain, giving the baked product a soft and spongy texture. The use of potatoes, water from potato boiling, eggs, or sugar in a bread dough accelerates the growth of yeasts. Salt and fats such as butter slow down yeast growth. The majority of the yeast used in baking is of the same species common in alcoholic fermentation. Additionally, Saccharomyces exiguus (also known as S. minor) is a wild yeast found on plants, fruits, and grains that is occasionally used for baking. Sugar and vinegar are the best conditions for yeast to ferment. In bread making the yeast respires aerobically at first producing carbon dioxide and water. When the oxygen is used up anaerobic respiration is used producing ethanol as a waste product however this is evaporated off during the baking process.
A block of fresh yeast.It is not known when yeast was first used to bake bread. The first records that show this use came from Ancient Egypt. Researchers speculate that a mixture of flour meal and water was left longer than usual on a warm day and the yeasts that occur in natural contaminants of the flour caused it to ferment before baking. The resulting bread would have been lighter and more tasty than the normal flat, hard cake.
Active dried yeast, a granulated form in which yeast is commercially sold.Today there are several retailers of baker's yeast; one of the best-known in North America is Fleischmann’s Yeast, which was developed in 1868. During World War II Fleischmann's developed a granulated active dry yeast, which did not require refrigeration and had a longer shelf life than fresh yeast. The company created yeast that would rise twice as fast, cutting down on baking time. Baker's yeast is also sold as a fresh yeast compressed into a square "cake". This form perishes quickly, and must be used soon after production in order to maintain viability. A weak solution of water and sugar can be used to determine if yeast is expired. When dissolved in the solution, active yeast will foam and bubble as it ferments the sugar into ethanol and carbon dioxide. Some recipes refer to this as proofing the yeast as it gives proof of the viability of the yeast before the other ingredients are added. When using a sourdough starter, flour and water are added instead of sugar and this is referred to as proofing the sponge.
When yeast is used for making bread, it is mixed with flour, salt, and warm water (or milk). The dough is kneaded until it is smooth, and then left to rise, sometimes until it has doubled in size. Some bread doughs are knocked back after one rising and left to rise again. A longer rising time gives a better flavour, but the yeast can fail to raise the bread in the final stages if it is left for too long initially. The dough is then shaped into loaves, left to rise until it is the correct size, and then baked. Dried yeast is usually specified for use in a bread machine, however a (wet) sourdough starter can also work.
Bioremediation
Some yeasts can find potential application in the field of bioremediation. One such yeast Yarrowia lipolytica is known to degrade palm oil mill effluent,[29] TNT (an explosive material), and other hydrocarbons such as alkanes, fatty acids, fats and oils.
Industrial ethanol production
The ability of yeast to convert sugar into ethanol has been harnessed by the biotechnology industry, which has various uses including ethanol fuel. The process starts by milling a feedstock, such as sugar cane, field corn, or cheap cereal grains, and then adding dilute sulfuric acid, or fungal alpha amylase enzymes, to break down the starches into complex sugars. A gluco amylase is then added to break the complex sugars down into simple sugars. After this, yeasts are added to convert the simple sugars to ethanol, which is then distilled off to obtain ethanol up to 96% in concentration.
Saccharomyces yeasts have been genetically engineered to ferment xylose, one of the major fermentable sugars present in cellulosic biomasses, such as agriculture residues, paper wastes, and wood chips. Such a development means that ethanol can be efficiently produced from more inexpensive feedstocks, making cellulosic ethanol fuel a more competitively priced alternative to gasoline fuels.
Kombucha
A Kombucha culture fermenting in a jarYeast in symbiosis with acetic acid bacteria is used in the preparation of Kombucha, a fermented sweetened tea. Species of yeast found in the tea can vary, and may include: Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii.
Nutritional supplements
Yeast is used in nutritional supplements popular with vegans and the health conscious, where it is often referred to as "nutritional yeast". It is a deactivated yeast, usually Saccharomyces cerevisiae. It is an excellent source of protein and vitamins, especially the B-complex vitamins, whose functions are related to metabolism as well as other minerals and cofactors required for growth. It is also naturally low in fat and sodium. Some brands of nutritional yeast, though not all, are fortified with vitamin B12, which is produced separately from bacteria. Nutritional yeast, though it has a similar appearance to brewer's yeast, is very different and has a very different taste.
Nutritional yeast has a nutty, cheesy, creamy flavor which makes it popular as an ingredient in cheese substitutes. It is often used by vegans in place of parmesan cheese. Another popular use is as a topping for popcorn. Some movie theaters are beginning to offer it along with salt or cayenne pepper as a popcorn condiment. It comes in the form of flakes, or as a yellow powder similar in texture to cornmeal, and can be found in the bulk aisle of most natural food stores. In Australia it is sometimes sold as "savory yeast flakes". Though "nutritional yeast" usually refers to commercial products, inadequately fed prisoners have used "home-grown" yeast to prevent vitamin deficiency.
Probiotics
Some probiotic supplements use the yeast Saccharomyces boulardii to maintain and restore the natural flora in the large and small gastrointestinal tract. S. boulardii has been shown to reduce the symptoms of acute diarrhea in children, prevent reinfection of Clostridium difficile, reduce bowel movements in diarrhea predominant IBS patients, and reduce the incidence of antibiotic, traveler's, and HIV/AIDS associated diarrheas.
Root beer and sodas
Root beer and other sweet carbonated beverages can be produced using the same methods as beer, except that fermentation is stopped sooner, producing carbon dioxide, but only trace amounts of alcohol, and a significant amount of sugar is left in the drink.
Science
Diagram showing a yeast cellSeveral yeasts, particularly Saccharomyces cerevisiae, have been widely used in genetics and cell biology. This is largely because the cell cycle in a yeast cell is very similar to the cell cycle in humans, and therefore the basic cellular mechanics of DNA replication, recombination, cell division and metabolism are comparable. Also yeasts are easily manipulated and cultured in the lab which has allowed for the development of powerful standard techniques, such as Yeast two-hybrid, Synthetic genetic array analysis and tetrad analysis. Many proteins important in human biology were first discovered by studying their homologs in yeast; these proteins include cell cycle proteins, signaling proteins, and protein-processing enzymes.
On 24 April 1996 S. cerevisiae was announced to be the first eukaryote to have its genome, consisting of 12 million base pairs, fully sequenced as part of the Genome project.[44] At the time it was the most complex organism to have its full genome sequenced and took 7 years and the involvement of more than 100 laboratories to accomplish.[45] The second yeast species to have its genome sequenced was Schizosaccharomyces pombe, which was completed in 2002.[46] It was the 6th eukaryotic genome sequenced and consists of 13.8 million base pairs.